miércoles, 1 de septiembre de 2010

COMUNICACION DE DATOS

Comunicación de Datos

Multiplexación (Por división de Frecuencia, Por División de Onda, por División de Tiempo)
En telecomunicación, la multiplexación es la combinación de dos o más los cuales pueden ser canales de información en un solo medio de transmisión usando un dispositivo llamado multiplexor. El proceso inverso se conoce como demultiplexación. Un concepto muy similar es el de control de acceso al medio.
Existen muchas estrategias de multiplexación según el protocolo de comunicación empleado, que puede combinarlas para alcanzar el uso más eficiente; los más utilizados son:
• la multiplexación por división de tiempo o TDM (Time división multiplexing
• la multiplexación por división de frecuencia o FDM (Frequency-división multiplexing) y su equivalente para medios ópticos, por división de longitud de onda o WDM (de Wavelength);
• la multiplexación por división en código o CDM (Code division multiplexing);
Cuando existe un esquema o protocolo de multiplexación pensado para que múltiples usuarios compartan un medio común, como por ejemplo en telefonía móvil o WiFi, suele denominarse control de acceso al medio o método de acceso múltiple. Como métodos de acceso múltiple destacan:
• el acceso múltiple por división de frecuencia o FDMA;
• el acceso múltiple por división de tiempo o TDMA;
• el acceso múltiple por división de código o CDMA.
La multiplexación por división de tiempo (TDM) es una técnica que permite la transmisión de señales digitales y cuya idea consiste en ocupar un canal (normalmente de gran capacidad) de transmisión a partir de distintas fuentes, de esta manera se logra un mejor aprovechamiento del medio de transmisión. El Acceso múltiple por división de tiempo (TDMA) es una de las técnicas de TDM más difundidas
El Acceso múltiple por división de frecuencia (Frecuency Division Multiple Access o FDMA, del inglés) es una técnica de multiplexación usada en múltiples protocolos de comunicaciones, tanto digitales como analógicos, principalmente de radiofrecuencia, y entre ellos en los teléfonos móviles de redes GSM.
En FDMA, el acceso al medio se realiza dividiendo el espectro disponible en canales, que corresponden a distintos rangos de frecuencia, asignando estos canales a los distintos usuarios y comunicaciones a realizar, sin interferirse entre sí. Los usuarios pueden compartir el acceso a estos distintos canales por diferentes métodos como TDMA, CDMA o SDMA, siendo estos protocolos usados indistintamente en los diferentes niveles del modelo OSI.
En algunos sistemas, como GSM, el FDMA se complementa con un mecanismo de cambio de canal según las necesidades de la red lo precisen, conocido en inglés como frequency hopping o "saltos en frecuencia".
En telecomunicación, la multiplexación por división de longitud de onda (WDM, del inglés Wavelength Division Multiplexing) es una tecnología que multiplexa varias señales sobre una sola fibra óptica mediante portadoras ópticas de diferente longitud de onda, usando luz procedente de un láser o un LED.
Este término se refiere a una portadora óptica (descrita típicamente por su longitud de onda) mientras que la multiplexación por división de frecuencia generalmente se emplea para referirse a una portadora de radiofrecuencia (descrita habitualmente por su frecuencia). Sin embargo, puesto que la longitud de onda y la frecuencia son inversamente proporcionales, y la radiofrecuencia y la luz son ambas formas de radiación electromagnética, la distinción resulta un tanto arbitraria.
El dispositivo que une las señales se conoce como multiplexor mientras que el que las separa es un demultiplexor. Con el tipo adecuado de fibra puede disponerse un dispositivo que realice ambas funciones a la vez, actuando como un multiplexor óptico de inserción-extracción.
Los primeros sistemas WDM aparecieron en torno a 1985 y combinaban tan sólo dos señales. Los sistemas modernos pueden soportar hasta 160 señales y expandir un sistema de fibra de 10 Gb/s hasta una capacidad total 25.6 Tb/s sobre un solo par de fibra.


Codificación y decodificación (Modulación de Amplitud, Modulación por desplazamiento de fase)
Modulación engloba el conjunto de técnicas para transportar información sobre una onda portadora, típicamente una onda sinusoidal. Estas técnicas permiten un mejor aprovechamiento del canal de comunicación lo que posibilita transmitir más información en forma simultánea, protegiéndola de posibles interferencias y ruidos.
Básicamente, la modulación consiste en hacer que un parámetro de la onda portadora cambie de valor de acuerdo con las variaciones de la señal moduladora, que es la información que queremos transmitir.
Dependiendo del parámetro sobre el que se actúe, tenemos los distintos tipos de modulación:
• Modulación en doble banda lateral (DSB)
• Modulación de amplitud (AM)
• Modulación de fase (PM)
• Modulación de frecuencia (FM)
• Modulación banda lateral única (SSB, ó BLU)
• Modulación de banda lateral vestigial (VSB, VSB-AM, ó BLV)
• Modulación de amplitud en cuadratura (QAM)
• Modulación por división ortogonal de frecuencia (OFDM), también conocida como 'Modulación por multitono discreto' (DMT)
• Modulación por longitud de onda
• Modulación en anillo

Amplitud modulada (AM) o modulación de amplitud es un tipo de modulación no lineal que consiste en hacer variar la amplitud de la onda portadora de forma que esta cambie de acuerdo con las variaciones de nivel de la señal moduladora, que es la información que se va a transmitir.
AM es el acrónimo de Amplitudes Modulation (en español: Modulación de Amplitud) la cual consiste en modificar la amplitud de una señal de alta frecuencia, denominada portadora, en función de una señal de baja frecuencia, denominada moduladora, la cual es la señal que contiene la información que se desea transmitir. Entre los tipos de modulación AM se encuentra la modulación de doble banda lateral con portadora (DSBFC).
Modulación de fase
Tipo de modulación que se caracteriza porque la fase de la onda portadora varía directamente de acuerdo con la señal modulante, resultando una señal de modulación en fase.
Se obtiene variando la fase de una señal portadora de amplitud constante, en forma directamente proporcional a la amplitud de la señal modulante. La modulación de fase no suele ser muy utilizada porque se requieren equipos de recepción más complejos que los de frecuencia modulada. Además puede presentar problemas de ambigüedad para determinar por ejemplo si una señal tiene una fase de 0º o 180º.

Codificación Manchester
La codificación Manchester, también denominada codificación bifase-L, es un método de codificación eléctrica de una señal binaria en el que en cada tiempo de bit hay una transición entre dos niveles de señal. Es una codificación autosincronizada, ya que en cada bit se puede obtener la señal de reloj, lo que hace posible una sincronización precisa del flujo de datos. Una desventaja es que consume el doble de ancho de banda que una transmisión asíncrona. Hoy en día hay numerosas codificaciones (8b/10b) que logran el mismo resultado pero consumiendo menor ancho de banda que la codificación Manchester.
La codificación Manchester se usa en muchos estándares de telecomunicaciones, como por ejemplo Ethernet.

• Las señales de datos y de reloj, se combinan en una sola que auto-sincroniza el flujo de datos.
• Cada bit codificado contiene una transición en la mitad del intervalo de duración de los bits.
• Una transición de negativo a positivo representa un 1 y una transición de positivo a negativo representa un 0.


Ejemplo de codificación Manchester, de acuerdo con las convenciones Ethernet
Los códigos Manchester tienen una transición en la mitad del periodo de cada bit. Cuando se tienen bits iguales y consecutivos se produce una transición al inicio del segundo bit, la cual no es tenida en cuenta por el receptor al momento de decodificar, solo las transiciones separadas uniformemente en el tiempo son las que son consideradas por el receptor. Hay algunas transiciones que no ocurren a mitad de bit. Estas transiciones no llevan información útil, y solo se usan para colocar la señal en el siguiente estado donde se llevará a cabo la siguiente transición. Aunque esto permite a la señal auto-sincronizarse, en realidad lo que hace es doblar el requerimiento de ancho de banda, en comparación con otros códigos como por ejemplo los Códigos NRZ.
La codificación Manchester como Modulación por desplazamiento de fase
La codificación Manchester es solo un caso especial de la Modulación por desplazamiento de fase, donde los datos que van a ser transmitidos controlan la fase de una onda rectangular portadora. Para controlar la cantidad de ancho de banda consumida, se puede usar un filtro para reducir el ancho de banda hasta un valor bajo como 1Hz por bit/segundo, y mantenerlo para no perder información durante la transmisión.
Ventajas y desventajas del uso de la codificación Manchester
Como ventajas principales se pueden destacar las siguientes:
• La codificación Manchester o codificación bifase-L es autosincronizada: provee una forma simple de codificar secuencias de bits, incluso cuando hay largas secuencias de periodos sin transiciones de nivel que puedan significar la pérdida de sincronización, o incluso errores en las secuencias de bits. Por ello es altamente fiable.
• Detección de retardos: directamente relacionado con la característica anterior, a primera vista podría parecer que un periodo de error de medio bit conduciría a una salida invertida en el extremo receptor, pero una consideración más cuidadosa revela que para datos típicos esto llevaría a violaciones de código. El hardware usado puede detectar esas violaciones de código, y usar esta información para sincronizar adecuadamente en la interpretación correcta de los datos.
• Esta codificación también nos asegura que la componente continua de las señales es cero si se emplean valores positivos y negativos para representar los niveles de la señal, haciendo más fácil la regeneración de la señal, y evitando las pérdidas de energía de las señales.
Las principales desventajas asociadas son las siguientes:
• Ancho de banda del doble de la señal de datos: una consecuencia de las transiciones para cada bit es que el requerimiento del ancho de banda para la codificación Manchester es el doble comparado en las comunicaciones asíncronas, y el espectro de la señal es considerablemente más ancho. La mayoría de los sistemas modernos de comunicación están hechos con protocolos con líneas de codificación que persiguen las mismas metas, pero optimizan mejor el ancho de banda, haciéndolo menor.

No hay comentarios:

Publicar un comentario